|

# Modules

Iterations
 You are here: Modules > Iterations Links in the text refer to the lower part of the page

# Iterations

Calculate algebraic series such as e = 1+ 1/2! + 1/3! + ..., a square wave, Fibonacci numbers. Study iterative maps, e.g. the (one-dimensional) Logistic map: (see below) or more complicated multi-dimensional maps. The logistic map is perhaps one of the simples mathematical system showing many characteristics of the development of chaotic behaviour.
Several analytical tools are valailable to study the results of Iterations and ODE's such as:
 time series | Power spectra | 2D projections | Fixed points | Lyapunov exponents
A special window has been added in Mathgrapher v2 to allow detailed presentation of 2D orbits at the pixel level and to study the stability of the orbits (see the Examples and Demonstrations for the Henon map, Standard map and Mandelbrot and Julia sets.

Examples:
 Logistic map: Sensitivity to initial conditions Projection in 2D Power spectrum Bifurcation diagram Lyapunov exponents Henon map: Definition 2D orbit Region of Stability Mandelbrot and Julia sets: Definition Mandelbrot: vary parameters Julia: vary initial conditions

Iterations: Examples - Henon map - Definition

# Henon map - Definition

The Henon map is the 2D extension of the logistic map. So we have the following definitions:
So we have the following definitions:
 F1=F3F2=F4F3=1-a*F1^2+F2F4=b*F1

The Fifth function F5=sqrt(x^2+y^2)=sqrt(F3^2+F4^2) is used in the Stability criterium

 © MathGrapher 2006 | Freeware since 25 october 2013 Contact the Webmaster